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USING NUMBER FIELDS 
TO COMPUTE LOGARITHMS IN FINITE FIELDS 

OLIVER SCHIROKAUER 

ABSTRACT. We describe an adaptation of the number field sieve to the problem 
of computing logarithms in a finite field. We conjecture that the running 
time of the algorithm, when restricted to finite fields of an arbitrary but fixed 
degree, is Lq[l/3; (64/9)1/3 + o(1)], where q is the cardinality of the field, 
Lq[s;c] = exp(c(logq)s(loglogq)1-s), and the o(1) is for q -o 00. The number 
field sieve factoring algorithm is conjectured to factor a number the size of q 
in the same amount of time. 

1. INTRODUCTION 

Let q = pn, where p is a prime number and n a positive integer, and let Fq be 
the field of q elements. Let t and v be nonzero elements in Eq such that v is in 
the multiplicative subgroup generated by t, and let x be the smallest nonnegative 
integer such that tx = v. We call the exponent x the discrete logarithm of v with 
respect to the base t and write x = logt v. In this paper we present an algorithm 
to compute logt v. 

The most succesful methods to date to compute discrete logarithms in a finite 
field are all descendants of the index calculus method described by Kraitchik in 
the 1920's (see [14] and [15]) and rediscovered and. modified by numerous mathe- 
maticians since then (see [25] and [31]). The idea of this approach is to find many 
multiplicative relations among members of a small subset of IFq containing t and v. 
Each such relation gives a linear relation among the logarithms of the elements in 
the subset. Once enough relations are collected, the values of the logarithms can 
be obtained using linear algebra. 

The two newest members of the index calculus family are the number field sieve 
and the function field sieve. The first, due to Gordon [12] and modified in [29], 
is an adaptation of the number field sieve factoring algorithm to the problem of 
computing logarithms in a prime field. The computations in this method, as with 
its factoring counterpart, take place in a finite extension of Q. The second, due 
to Adleman [1] and modified in [3], is most suitable for computing logarithms in 
fields of small characteristic. In this case, the structure of the number field sieve is 
transported to a finite extension of Fp(X). 

The algorithm we present in this paper is an extension of the number field sieve 
algorithm in [29] to the case when n > 1. Though very similar to its predecessor 
for prime fields, it differs in one substantial way. The field extension at the heart 
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of the algorithm is not built over Q but instead on top of an extension of Q. As a 
consequence, many of the routine computations and reductions that are employed 
in the earlier algorithm are more difficult now. 

We begin in ?2 with some background information from algebraic number theory. 
In ?3 we describe how to use the ideas of the number field sieve to compute the 
residue of logt v modulo a prime power dividing q - 1. In conjunction with the 
Chinese remainder theorem, this method can be used to find logt v. The analysis 
given in ?4 leads us to conjecture that when t and v are not too large, in a sense 
to be made precise later, the algorithm of ?3 runs in time 

(1.1) Lq[l/3; (64/9)1"3 + o(l)] 

where 

Lq [s; c] = exp (c(log q)S (log log q)-S)v 

and the o(1) is for q -0 oc with n constant. In ?5 we show how to reduce the general 
discrete logarithm problem to the case that t and v are optimal for the method of 
?3 and establish (1.1) as the conjectural running time for the general algorithm. 

In the case that n = 1, our results are not new and can be found in [29]. For 
n > 1, the appearance of the parameter value 1/3 in (1.1) is an improvement 
over the constant 1/2 achieved by earlier algorithms handling fields of arbitrary 
characteristic and fixed degree ([2], [11], [24]). We note that the quantity (1.1) 
is conjectured in [6] to be the time needed by the number field sieve to factor an 
integer the size of q. In [9], Coppersmith proposes a modification of the number 
field sieve for factoring that uses many number fields simultaneously. As a result, 
he obtains a conjectural running time of 

[1/3; (92 + 26 13)1/3 ?0(1)] 

to factor a number the size of q. We do not discuss his ideas in the present work 
and leave it to the reader to show that, when applied to our algorithm, they yield 
the same improvement. 

As indicated, we content ourselves in this paper with asymptotic times for n 
fixed. For a discussion of recent work on the problem of finding a discrete loga- 
rithm algorithm with a running time of Lq[1/3; c + o(1)] for q -* 00 with both p 
and n varying, we refer the reader to [30], where Adleman's function field sieve is 
conjectured to have a running time of (1.1) under the constraint that log p < n1/2 
and where a modification of our present algorithm is given which is conjectured to 
run in time (1.1) so long as log p > n2+E for some e > 0. 

We do not address in this paper questions of practicality. Both the function field 
sieve in the special form of Coppersmith's algorithm for characteristic 2 and the 
number field sieve for prime fields have been implemented (see [13] and [33]-[35]). 
Indeed, Weber, in [34], is able to compute logarithms in a prime field of 85 digits 
using the number field sieve. It is our belief that for very small n, the algorithm 
given in this paper is practical and should be able to handle fields near the size of 
those discussed in [34]. Experiments testing this conviction might be of particular 
interest to cryptographers working with elliptic curves, as it has been shown that 
the logarithm problem on a supersingular elliptic curve over IFq can be reduced in 
subexponential time to the discrete logarithm problem in a field of small degree 
over Fq (see [26]). 
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2. PRELIMINARIES 

Let K be a number field of degree n over Q and let OK be its ring of integers. Let 
U1, ... * *ndenote the embeddings of K into C and let II be the standard complex 
absolute value. For zy E OK, we define the height of y by h('y) = max{IIai(y)I}. 

2.1 Lattices. A lattice in RTn is the 2-span of a set of R-linearly independent 
vectors. Let {b1,... ,bn} be such a set of vectors and let L = n 2bi. We say 
that {bi} is a basis of L, and define the determinant d(L) of L to be the absolute 
value of the determinant of the matrix whose columns are the vectors b1, ... , bn. 
The determinant of L is independent of the basis used to calculate it. 

Let fl denote the Euclidean norm on RT. We call a basis {bi}1<i<n reduced if 

(i) Ijbill < 2(n-1)/4 * d(L) 1/n for some i, and 
(ii) 2(1-i)/2Ai < Ifbill < 2(n-l)/2Ai for 1 < i < n, where A1,... An are the 

successive minima for fl fl on L. 

The notion of "reduced" presented here is not the same as the more usual defi- 
nition found, for example, in [19]. However, any basis which is reduced in the sense 
of [19] is reduced in our sense. Given a basis consisting of elements in En with 
Euclidean norm bounded by B, the Lenstra-Lenstra-Lova'sz algorithm (LLL) finds 
a reduced basis in time Q(n4 log B) (see [19]). 

Assume now that t1,... , tn are elements in OK which form a module basis for 
OK over Z. Then the map that sends the element E aiti E OK to the vector 
(a,... 7 an) E En is an isomorphism from the additive group of OK to En. The 
image of an ideal a under this map is an n-dimensional lattice with determinant 
equal to N(a), the ideal norm of a. Applying LLL to this lattice, therefore, produces 
a vector of Euclidean norm < 2(n-1)/4N(a)1/n and hence an element in a with height 
bounded by kn2( 1)/4N(a)1/n, where k = max{h(ti)}. 

2.2 Smoothness. Let B be a positive real number. We say that an integer is 
B-smooth if each of its prime factors is at most B. We say that an element zy E OK 

is B-smooth if its norm to Q is B-smooth in Z. The algorithm we describe in 
?3 requires finding many smooth elements in two different number fields. In our 
analysis of it, we use the following theorem from [7] and corollary from [6]. Let 
,b(M, B) denote the number of positive integers < M which are B-smooth. 

Theorem 2.2.1. Let be a positive constant. Then 

/(M, B) = -u(1+o(1)) 

uniformly in the region M > 10 and B > (log M)l+e, where u = (log M)/log B 
and the limit implicit in the o(1) is for u -* oo. 

Corollary 2.2.2. Suppose g: R>2 -* R>1 is a function such that g(y) = yl+O(l) 
for y - oo. Then, as x - oo, 

4g( Y) > LX [1/2; X/_ + o(1)] 

uniformly for all y > 2. 
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2.3 Additive characters on OK. Let I be a rational prime which does not ramify 
in K. In ?3, we are interested in constructing a product of smooth elements of K 
which is an l'th power for some given positive integer e. To do so, we make use of 
a family of maps defined as follows. Let 

Fl =Q EOK I Nf () i O mod 1}. 

For each prime ideal t in OK dividing (1), let e = (OK/ )*| and let e be the least 
common multiple of the e. Then for all zy E Fl, 

ae _ 1 mod 1. 

Now define a map A1: FL - IOK/12OK by 

Al (.Y) =(,y _ 1) + 12OK. 

Furthermore, for i > 1, let Fi = ?? E 
rF--jAil(?y) 

= O}, and let 
A. : F- 

12 OK/12 OK be the function given by Ad(Y) = -1) + 12 OK. For 1 j < n, 
let {b,l2 + 12OK} be a module basis for 12 OK/2 OK over 2/12Z2. Then A. 
is given by the maps 

Ai jF, ___ 2/12' Z 

defined by the congruence 
n 

-1 EAi j ( )b_l2 mod 12. 

j=1 

Note that since A(yy') = Ai (y) + Ai (y') and A,(yY') = j + A,j the maps 
A2 and Ai,j are homomorphisms on the group of units of OK. 

For any zy E K* and any prime ideal p C OK, let ord,(,y) be the exponent to 
which p divides the fractional ideal generated by 'y. The usefulness of the maps A- 
stems from the following result. 

Proposition 2.3.1. Let I be a prime that does not ramify in K, let e be a positive 
integer, and let p be the least integer such that 2P > e. Assume that the class 
number of K is not divisible by I and that the units in OK which are congruent to 
1 mod le+1 are leth powers. Let zy E Fp be such that 

(i) ordp(,y) 0 O mod l for all prime ideals p in OK, and 

(ii) A,(-y) = 0. 

Then ty is an lth power in OK- 

For more about the maps Ai, as well as a proof of Proposition 2.3.1, see [29, ?3]. 

2.4. Model for Fq. Let p be prime and let q = pn. By a model for FEq we mean 
a set of cardinality q with an addition operation and a multiplication operation 
giving the set the structure of a field. Since it is possible to exhibit an isomophism 
between different models of FEq in polynomial time (see [22]), it suffices to be able 
to compute discrete logarithms in a model of our choosing. 

Let r be the smallest prime congruent to 1 mod n such that n is prime to (r- 1)/f 
where f is the order of p in (Z/rZ)*. Let ?r be a primitive rth root of unity, F 
the unique subfield of Q((r) of degree n over Q, and OF the ring of integers of F. 
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Then OF/POF ? Fq. Let t1 be the trace of ?r in F and let {t}J1<j<n be the set of 
conjugates of t1 in OF. Then {tj} is a basis for OF over 2, and 

Rq ={ ajt I < aj < p-1} 

is a set of representatives for OF/POF. Thus Rq, with addition and multiplication 
given by addition and multiplication in OF taken modulo p, is a model for Fq. We 
adopt this model, and for the remainder of the paper denote by Fq the field of q 
elements with underlying set Rq. In addition, we let 0 : OF -* Fq be the projection 
induced by sending zy to the unique element in Rq congruent to zy mod p. 

Not surprisingly, the running time of our discrete logarithm algorithm depends 
on the size of r. It follows from Theorem 3 in [4] that if the extended Riemann 
hypothesis (ERH) is true, then there exists a constant c such that for all p prime and 
n prime to p, we have r < cn6(log(np))2. We assume, therefore, that as p -* oo with 
n constant, r is less than a constant multiple of (log p)2, and that the discriminant 
of F, which we denote for the remainder of the paper by /q and which equals rn-1, 
is bounded by a constant multiple of (log p)2n-2. 

3. THE NUMBER FIELD SIEVE FOR n > 1 

We describe an algorithm for computing the residue of a discrete logarithm in 
Fq modulo a prime power 1' dividing q - 1. In ?5, this method is incorporated 
into a general discrete logarithm algorithm. We adopt the model for Fq given in 
subsection 2.4 and continue with all the notation introduced in that subsection. 

Algorithm 3.1. This algorithm takes as input a prime power q = pn, two integers 
d and B such that d > 2 and B > 2n(n-1)/4(r -_ )n, an element a E OF of 
height < pd-V such that 0b(o-) E F*, a B-smooth element r E OF such that 0b(r) is 
primitive in Fq, and a prime power ie dividing q - 1 with I > max{r, B}. It outputs 
the least positive residue of logo(T) q$(u) modulo le. Note that this algorithm can 
be used to compute logo(,) q$(u) mod ie for any pair a, T so long as h(u) < p1/3 and 
I is sufficiently large. 

The computations in the algorithm take place in two different number rings. 
One is the ring OF, and the second is an extension of OF obtained by adjoining 
to OF a root of a polynomial in OF [X]. The first two steps of our algorithm are 
concerned with the construction of a suitable polynomial. 
Step 1. Let c be the smallest nonnegative integer such that 

FN (2cu)l > (p + I)nT(r - I)n. 

If 

h(2c7) ? 2ln(pd+1 + 1)(r - 1)2, 

let m = 2ca and proceed to Step 2. Otherwise, apply LLL reduction to the 
lattice obtained by embedding the ideal (a) into Zn as described in subsection 
2.1 and in such a way produce an element zya E (a) with height bounded by 
2(n-1)/4N?F(a)I1/n(r - 1). Let m = 2c-ya, where c is the smallest nonnegative 

integer such that 

FN?'(m) I> (p411 
+ 1)n(r -T).. 
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Notice that a is B-smooth, and that 

h(m) =2'h(-ya) < 2'2 4 IN?2(f|l (r -1) = 2TL4 Q N? (2C)lt (r1) 

In the case that c > 0, we have 

IN,(2cu)| ? l N(m)l < 2T(p+? + I)N(r - 

and consequently, 

(3.2) h(m) < 2n(p d+1 )(r-1)2 

If c = 0, then (3.2) follows from the fact that IN?U'(U)1/1n < h(u) < pd+l. 

Step 2. Let 

{ (aij)i=O,.,d EZn(d+1) aijtjm _ O mod p}. 
j =l1,. . .,n i,j 

Then L is a n(d + 1)-dimensional lattice. Let a,,vj be given by the equation 
n 

tvm' = E tUvjtj 

j=1 

and let uv be the least nonnegative residue of auvj modulo p. Let b(u, v) = 

(b(u, v)ij) be the vector in L which for u = 1,... , d and v = 1,... , n is given by 

f-I if (i,j) = (u,v), 
b(u,=v)ij auvJ if i = 0, 

{O otherwise, 

and which for u = O and v = 1, ... , n is given by 

b(u, v)ij = fp if (i, j) = (u, v), 
0 otherwise. 

Then {b(u, v)} is a basis for L. Apply LLL to this basis and let b = (bij) be a vector 
in the resulting reduced basis which is of minimum Euclidean norm lying outside 
of the sublattice 

Lo = {(aj)I E aijtjm2 = 0}. 

For i = O,... , d, let pi = n=1 bijtj. Now find integers yo and Yi of minimal 
absolute value such that Ad + yo and f0 - Yim are B-smooth. Since N F (d + y) and 
N? (Bo - ym) are polynomials in 2[y], a sieve can be used to test for smoothness 
(see [27] and [28]), though the running time results of ?4 are not affected if the 
elliptic curve factoring method of [21] is used to test candidates instead. Next let 

d-2 

fo = (3d + yO)Xd + (3d-1 - yom)Xd+1 + + (fl1 + Y1)X + (f30 - ynm) 
i=2 

and find Y2 of minimal absolute value such that.fo + (y2X2 - y2mX) has discrim- 
inant prime to I and has smooth leading coefficient, this second condition being 
automatically satisfied for d > 2. Let f = fo + (y2X2 - y2mX) and, to simplify 
notation, write f = >j=o ciX'. Finally, let g = Xd + Z=?l(cd)di1ciXi. 

Let w be a root of f, in which case a = Cdw is a root of g. The number fields 
we proceed to compute in are F and K = F(w) = F(a). Note that the polynomial 
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f has three special properties. The first is that f(m) E POF. As a result, we can 
extend the ring homomorphism 0 : OF -+ Fq introduced in subsection 2.4 to a 
ring homomorphism from OF [a] to Fq by sending a to q$(cdm). The second is that 
the leading and constant terms of f are B-smooth. Consequently, a is B-smooth. 
This fact allows us to include a, and in turn a, into the relation we construct in 
Step 4. The requirement that f has a smooth leading coefficient, however, is only a 
matter of convenience. It allows us to work in OF [a]. For an alternative approach, 
in which no constraint is put on the leading coefficient of f and the computations 
take place in the ring OF[w] n OF[W 1], see [6, ?12]. The third property of f is 
that it has small coefficients. By this we mean that the height of these coefficients 
is close to that of m. To show that this is the case for :0,... ., /d, let 

( ~ ~ ~~~~~~~~~~~~~~~~1 
M = {(bi;) E Zn(d+l) | pjd+ + 1 

Since IMI > pn, there exist two distinct vectors (cij) and (dij) in M such that 
E(c.j - dij)tjm2 _ 0 mod p. Moreover, (c-j -d2) , Lo, since if it were, then for 
some i, the sum 

n 

E(cij -dij)tj 
j=1 

would be both nonzero and congruent to 0 mod m, contradicting the fact that 
n 

FN,(S(c; -( C < (pd+1 + I)n(r - _)n < FNj(m)L 
j=1 

According to the definition of reduced given in subsection 2.1, the existence of a 
vector in L - LO with Euclidean norm less than n(d + 1)(pd+l + 1) implies that 
a reduced basis contains a vector outside of LO of Euclidean norm less than 

\/27(d+l)1 n(d + 1)(P d+1 + 1). 

We conclude that, for each i, 

(3.3) h(f32) < 27(d+l)lr(d + 1) (pd4l + I) (r - 1). 

In ?4, we see that in the cases that concern us yo, Yi, and Y2, are negligible compared 
to the bound in (3.3) and thus the height of the coefficients of f does not significantly 
exceed this quantity. 
Step 3. Our goal in this step is to collect pairs (a, b) E OF X OF such that the 
polynomial 

(3.4) NQ ((-b)df (_a/b)(a + bm)) 

is B-smooth. We indicate below how many pairs are needed. Writing a = E a tj 
and b = Zbjtj, we see that (3.4) is a polynomial over Z in the 2n coefficients 
a1, ... , an, b1, ... , bn. Therefore, a sieve can be used to test for smoothness, though 
as before, the elliptic curve factoring method can be used instead without affecting 
the running time analysis of ?4. Whichever test is used, the coefficients aj, bj should 
be taken as small as possible. Note that since 

NF (aCd + ba) = N (cd(a + b)) = Cd (-b)df(-a/b) 
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and Cd is B-smooth, each pair (a, b) found has the property that acd+ba! and a+bm 
are both B-smooth. 

Let TF be the set of prime ideals p of F such that p n z is generated by a prime 
< B, and let TK be the set of prime ideals of K satisfying the same condition and 
of degree 1 over F. For each (a, b) obtained, compute an exponent vector Wa,b of 
length ITF + ITKI + n + nd as follows. Index the coordinates of Wa,b by the primes 
in TF, the primes in TK, and j ranging from 0 to n + nd - 1. Let p be the least 
integer such that 2P > e. Now let 

Wa,b(p) = ordp (Cd(a + bm)) for p E TF 

Wa,b(q) = ordq(acd + bae) for q E TK 

Wa,b(j)=ApFj(Cd(a+bm)) for j=0,... ,In-1, 

Wa,b(j) =Ap-(acd+bo!) for j = n,... ,In + nd-1, 

where AF. and AK. are the maps from subsection 2.3 for the fields F and K 
respectively. In addition, compute the vector wr given by 

w7-(p) = ordp(T) for p E TF 

w (q) = 0 for q E TK 

w7-(j) = AFj(T) for j = 0,... ,n- 1, 
w(j U) = 0 for j=rn,...,In+rnd-1. 

Finally, recall from Step 1 that m = 2c-yu and let w, be the vector given by 

w,,(p) = ordp(cd2c-y) for p E TF, 

wo'(q)=ordq(a) for qETKI 

w (j) = AF j(cd2c-y) for j = 0,... ,In-1, 

w,, ( j) = AK (Of) for j = n,... ,I n + nd-1. 

In Step 4 below, we need to solve the congruence 

(3.5) AX _-we. mod le, 

where A is the matrix whose first column is w, and whose remaining columns are 
the vectors Wa,b. It is this requirement that dictates how many (a,b) must be 
collected in the present step. As soon as w, is in the column space of A, no more 
pairs are -needed. In particular, it suffices to find enough (a, b) so that A has rank 
TFI + |TK| + n + nd over IF1. 

To compute the entries in the exponent vectors corresponding to the primes in 
TF, first find the prime ideal factorization in (OF of the rational primes < B by 
means of Algorithm 6.2.9 in [8], using t1 as a generator for F over Q. Then employ 
Algorithm 4.8.17 in [8] to compute the order of a+bm at each prime in TF. For the 
entries corresponding to primes in TK a different approach is more efficient. Let q' 
be a prime ideal in OK containing an element acd + ba! and let q = ' n OF. Then 

= (q acd + bae), and no other prime ideal above q contains acd + bag. Therefore 
ordq,(acd + ba) = ordq(NFK(acd + ba)), and the method for computing the order of 
an element at a prime of (OF can be used. The only trick is to be able to distinguish 
the primes in TK lying above a given q E TF. However, this is easily done, since 
two representations (q, acd + ba!) and (q, a'Cd + b'a!) correspond to the same prime 
if and only if cd(b'a - ba') E q. Finally, to compute the values of ApF and A\P it 
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is enough to know the degrees of the primes in OF and OK lying above 1. In the 
case of F, use Algorithm 6.2.9 in [8] to decompose 1. For K, then, it suffices to 
determine, for each prime ideal e in OF lying above 1, the factorization type over 
OFIe of the polynomial g reduced mod e. For a discussion of methods to do this, 
see [22]. 
Step 4. Using the linear algebra techniques discussed for instance in [10], [16], and 
[36], solve equation (3.5). 
Step 5. Let (x,... , X(a,b),...) be a solution to (3.5). Then the integers x and 
X(a,b) satisfy the following conditions: 

(i) ordp (TxCd2c- rl (Cd(a + bm))x(ab)) 0 mod ie for all p E TF, 

(ii) ApF(TXCd2Cd y (cd(a + bm))X(a,b)) = o 

(iii) ordq (a !H(acd + bat)X(a b) = _0 mod ie for all q E TK, 

(iv) APK (a H (aCd + ba)) X(ab)) = 0. 

According to Proposition 2.3.1 and the heuristic arguments presented in [29, ?3], 
there is good reason to believe that the products T HCd2C- fl (cd(a + bm)) X(a,b) and 

H fl (acd + bae) (a,b) are both leth powers. If this is the case then, since v is a ring 
homomorphism and q(acd + bae) = q$(cd(a + bm)), we see that 0TXCT2Cdy)q(aO)-1 
is an leth power in Eq. Furthermore, since 0TxcCd2c-y)0(aO)-1 = 0(TSx)(a)-1, we 
have x _ logo(,) q(u) mod 1e. In other words, x is likely to be the number we seek, 
and all that remains is to check whether it is. If it is not, a number of options can 
be pursued. One is to run the entire algorithm again but with a different model 
for Eq obtained by replacing the number r by the next largest prime r' which is 
congruent to 1 mod n and for which p is inert in the degree n subfield of the r'th 
cyclotomic field. For other alternatives, we refer t4e reader to the description of 
Version 3.9 of the algorithm in [29, ?3]. 

4. OPTIMIZING ALGORITHM 3.1 

We minimize the running time of Algorithm 3.1, using as a guide the analysis in 
[6] of the number field sieve factoring algorithm. The result we obtain is used in ?5, 
where we see that the general discrete logarithm problem can be solved by repeated 
application of Algorithm 3.1 with optimal input. Throughout this section, assume 
that n is constant and that all o(l)'s are for p -* oo. 

We begin by computing how many elements need to be tested for smoothness in 
Step 3 in order to find enough pairs (a, b) to construct the matrix A, and in Step 
2 in order to find yo and Yi. To this end, for a prime p and integers d > 2 and 
B > 2n(n-1)/4(r - 1)n, let Cp,d,B be the least integer such that when Algorithm 
3.1 is run with input q = pn, d, B, any pair u, T E OF which is suitable input for 
the algorithm, and any prime power ie dividing q - 1 with I > max{r, B}, it is the 
case that for all pairs (a, b) found in Step 3, the coefficients aj, bj in the expressions 
a = E ajtj and b = E bjtj are < Cp,d,B in absolute value. In addition, letCpdB 
be the least integer such that when the algorithm is run with input as above, the 
elements Yo, Yi, and Y2 found in Step 2 are < C0dB in absolute value. Note that 
Cp,d,B and Cpd,Bare well defined, since neither depends on T or 1e and since for a 
given d only finitely many a can be input into the algorithm. Using (3.2), (3.3), the 
fact that h(a) and h(b) are < Cp,d,B(r - 1), and the assumption that r is bounded 
by a constant multiple of (log p)2, we see that expression (3.4), which represents 
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the size of the numbers being tested for smoothness in Step 3, is bounded by 

(4.1) kd 2 2 d(log p)d(2d+9)p a (Cp,d,B)T(d+1) (Cp,d,B) 

for some constant k. Using (3.2) and (3.3) again, we see that the numbers being 
tested for smoothness to find yo and Yi are bounded by 

(4.2) k/dhn2n2d(log p)4np! )(C' n)n 

for some constant k'. 
Assume now that d = d(p) and B = B(p) are functions of p satisfying d > 2 

and B > 2n(n-1)/4(r - 1)n, and let C = C(p) = Cp,d(p),B(p) and C' = C'(p) = 

Cp d(p),B(p) In addition, let u(p) be an element in OF with the property that 
when Algorithm 3.1 is run with input pn, d(p), B(p), v(p), and any T, the number 
of pairs in OF X OF which need to be tested in Step 3 is maximal. In other 
words, replacing u(p) by a different element does not increase the number of tests 
required. Similarly, let u'/(p) E OF be such that when the algorithm is run with 
input pn, d(p), B(p), (X/(p), and any T, the number of tests required to find yo and 
Yi in Step 2 is maximal. 

To determine the asymptotic behavior of C and C', we depend on four assump- 
tions. Two of these pertain to the performance of Algorithm 3.1 when pn, d(p), B(p), 
and u(p) are input. For this case, let T(p) be the number of pairs (a, b) tested in 
Step 3, let N(p) be the number of pairs (a, b) collected in this step, and let L(p) 
be the length of the columns of the matrix A appearing in equation (3.5). Let 
S(p) be the probability that a random integer bounded by (4.1) is B-smooth. Our 
assumptions then are that 

(4.3) N(p) = L(p) l+o(l) and N(p) = S(p)1+ o(1) 
T(p) 

The first equation reflects our expectation that A is close to square and the second 
our belief that integers arising as values of polynomials behave with respect to 
smoothness like random integers of the same size. 

Our second pair of assumptions is concerned with how Algorithm 3.1 runs with 
input pn,d(p),B(p), and u/(p). For this case, let Y(p) be the maximum absolute 
value of the elements yo and yi found in Step 2, and let S'(p) be the probability 
that a random integer bounded by (4.2) is B-smooth. Our assumptions are that 

(4.4) C'(p) = Y(p)1+O(1) and Y(p) = SI(p)1+o(l). 

The first simply states that Y2 is small. The second is based again on our conviction 
that polynomial values are random with respect to smoothness. 

Recall that the length of the vectors forming the columns of A is equal to ITF I + 

ITK I + n + nd and hence lies between B/ log B and a constant multiple of dB. This 
fact and assumptions (4.3) lead to the conclusion that 

(xBllogB ) +o(l) 2 x ZdB )+(1 

where x = kd 3n/22n 2d(log p)n(2d+9)p2n/dCn(d+1)C'n. Similarly, assumptions (4.4) 
imply that 

(4.6) c' = l+o(l) 
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where x' = k'dT2' 2d(log p)4np n/dC,n. We use the following result to convert (4-5) 
and (4.6) into a conjecture about the running time of Algorithm 3.1. 

Proposition 4.7. Assume d, B, C, and C' are functions of p satisfying (4.5) and 
(4.6). Assume also that dB > 2. Then 

(4.8) C2n > Lp[1/3; (64n/9) 1/3 + o(1)]. 

Furthermore, if 

(4.9) d = ((33n)1/3 + o(1))(log p/ log log p)1/3 

and 

(4.10) B = Lp[1/3; (8n/9)1/3 + o(1)], 

then the equality holds in (4.8). 

Proof. It follows from (4.5), Corollary 2.2.2, and the fact that x - oo as p - oo 
that 

c2n > xB/ log B 1+o(1) xB/logB 1+0(1) 

/ B >~ 0 (B) / ,[/,v2+ol] 

Following now the proof of Lemma 10.12 in [6], we square the logarithm of both 
sides of this inequality and then divide each side by its logarithm. As a result, we 
obtain 

r2 (log C)2 > (1 + o(1)) log x 
log log C - 

= (1+ o(M))(d$ logp+rn(d+1)log C+rn log C') 

> (1 + o(l)) (d + log p + n(d + 1) log C). 

Dividing through by nr2, applying Lemma 10.9 from [6], and multiplying the result- 
ing inequality through by n yields 

2n log(C(p)) > (1 + o(1)) (d log d + y(d log d)2 +4n log(pl/d) log log(pl/d)). 

We obtain the first part of the proposition by minimizing the right-hand side of this 
inequality. We note that (d log d)2 and log(pl/d) log log(pl/d) must be of the same 
order of magnitude, in which case d must be a multiple of (log p/ log log p) 1/3. With 
a little bit of calculus, we then see that the right-hand side attains its minimum of 

1/ + o(1)) (log p) 1/3 (log log p) 2/3 

when d = ((3n) 1/3 + o(1)) (log p/ log log p) 1/3. 
To prove the second claim, we assume d(p) and B(p) are as given and let c(p) 

be defined by the equation 

2n log(C(p)) = c(p) (log p) 1/3 (log log p)2/ 3. 

Using (4.6), (4.9), (4.10), and Theorem 2.2.1, we readily verify that C'n < 

Lp[2/3; o(1)]. Thus we find that 

log x = (1 + o(1))((8n2/3)1/3 + c(p)(3n/8)1/3) (log p)2/3(log log p)1/3. 
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It follows from Theorem 2.2.1 that 

= Lp[1/3; (n/9)1/3 + c(p)/4 + o(1)] 

and consequently that 

(xB) 1+(1) 
= Lp[1/3; (3n)1/3 + c(p)/4 + o(1)]. 

Using (4.5), we see that c(p) = (64n/9)1/3 + o(1). This concludes the proof of the 
proposition. O 

Proposition 4.7 leads us to believe that the number of tests required to find 
sufficiently many suitable pairs (a, b) in Step 3 of Algorithm 3.1 is at least 

(4.11) Lp[1/3; (64n/9)1/3 + o(1)], 

with equality occurring if the parameters d and B satisfy (4.9) and (4.10). The 
same can be said of the running time for Step 3, since the factor representing the 
time needed to test for smoothness, whether with a sieve or with the elliptic curve 
factoring method, is swallowed up by the o(1) in (4.11). We argue that in the case 
that h(T) is sufficiently small, the running time of the entire algorithm is given by 
(4.11). 

Using the result quoted in subsection 2.1, we determine that the time needed 
for the LLL basis reductions in Steps 1 and 2 does not exceed (4.11). It is a direct 
consequence of (4.6) and Theorem 2.2.1 that the time required to find yo, yi, and 
Y2 is also less than this bound. Since the running times of Algorithms 6.2.9 and 
4.10.17 in [8] are polynomial in log B and log lAql and since, under the ERH, 
I Aql = O((log p)2n-2), we have good reason to believe that each exponent vector 
Wa,b in Step 3 can be computed in time 

(ITFI + ITKI + n + nd)(log p)O(l) < dB(logp)0(1)(log p)O(l) 

and consequently that the time needed to obtain all exponent vectors is bounded 
by (dB)2+o(l)(log p)O(l). This quantity is equal to (4.11) when d and B satisfy 
(4.9) and (4.10). Note that it is in the computation of w, in Step 3 that the size 
of T comes into play. In order to guarantee that the time needed to compute w, 
is inconsequential, we adopt here the asumption that h(T) < p. The reader will 
see that such a restriction does not interfere with the general discrete logarithm 
algorithm given in the next section. In Step 4, the time required to solve (3.5) is 
bounded by the product of the maximum number of nonzero entries appearing in a 
column of the matrix A, the square of the maximum dimension of A, and a constant 
power of the logarithm of this dimension. Using the first assumption of (4.3), we 
readily see that this product is equal to (4.11) when (4.9) and (4.10) hold. Our last 
concern is the danger described in Step 5 that the fields F and K do not satisfy 
the conditions in Proposition 2.3.1 and that, consequently, the algorithm needs to 
be repeated. The heuristic analysis given in [29, ?3] suggests that the probability 
that F and K meet the desired conditions is at least 1 - (1 - 1)-1. Relying on this 
evidence, we assume that the factor introduced into the running time by Step 5 is 
asymptotically negligible and thus arrive at the following conjecture. 

Conjecture 4.12. Let d = d(p) and B = B(p) be functions such that d > 2 and 
B > 2n(n-l)/4(r - 1)n. Let T(p) be the maximum running time of Algorithm 3.1 
upon input of q = pn, d(p), B(p), any or E OF such that h(ou) < p1 and q(ur) E F* 
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any B-smooth T E OF such that h(T) < p and V$(T) is primitive in IEq, and any 
prime power Ie dividing q - 1 with I > max{r, B}. Then T(p) is bounded below by 
(4.11), with equality holding in the case that d and B satisfy (4.9) and (4.10). 

We conclude with two remarks concerning Algorithm 3.1 and the number field 
sieve factoring method. First, since 

Lp[1/3; (64n/9)1/3 + o(1)] = Lq[1/3; (64/9)1/3 + o(1)], 

we see that the conjectured running time of Algorithm 3.1 is the same as the 
conjectured time needed by the number field sieve to factor a number the size of 
q. Second, we note that, in contfast to the situation for factoring, the present 
algorithm does not lend itself easily to the case that there exists r, s E OF of small 
height such that p divides re + s. The reader familiar with the version of the number 
field sieve used to factor divisors of rational integers of this form will recall that the 
advantage gained is the smallness of the coefficients of the polynomial used to define 
the number field (see [20]). The analogous version of Algorithm 3.1 for special q, 
however, suffers because the polynomial f used to construct the field K in Step 2 
depends on the element uf as well as q and only has small coefficients for very few 
inputs. However, as Gordon describes in [12] for the case of prime fields, one can 
adjust the algorithm so as to use the special field made available by the form of q. 
We leave it to the reader to generalize Gordon's modifications to the case n > 1. 
The resulting method is slower than Algorithm 3.1, achieving a running time of 
Lq [2/5; c + o(1)] with c constant, but it is likely to be faster for values of q that can 
be handled in practice at this time. Indeed, the McCurley challenge [25], which 
asked for the solution to a discrete logarithm problem in a prime field of cardinality 

739 - 7149 - 736 
p = 

3 - I 

was recently solved with the number field sieve, using the field afforded by the 
special form of p (see [35]). 

5. GENERAL DISCRETE LOGARITHMS 

We incorporate Algorithm 3.1 into a solution to the general discrete logarithm 
problem. We continue with all the notation and the model for IFq introduced in 
subsection 2.4. 

Algorithm 5.1. This algorithm takes as input a prime power q = pn, a primitive 
element t E IFq a second element s E IFq and two integers d and B such that d > 2 
and B > 2n(n-1)/4(r-_ 1)n. It outputs logt S. 

Step 1. Let k = 2n(n-1)/4(r - 1)n. If qd4+1 < 2k, compute logt s using the Pohlig- 
Hellman-Silver method described, for instance, in [25, ?4.2]. Otherwise, continue 
as follows. 
Step 2. Factor q - 1 into a product Hl 1' of prime powers using the number field 
sieve. 
Step 3. For each prime I dividing q -1, find an element 7Y1 = Z ajtj E OF which is 
B-smooth and whose image under v is not in the subgroup of F* of order (q-1)/l. 
Do this by testing elements, choosing candidates in such a way that max{ aj } is 
as small as possible. Let 

T = f ^/ 
llq-1 
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Then T is B-smooth and V$(T) is primitive in IF*. 
Step 4. Let a be the element in Rq such that 4(a) = s. Use the elliptic curve 
factoring method to test randomly selected elements in {o,... ,q - 2} until an 
integer z is found such that the element in Rq congruent to TZJ mod p is pd+l k- 
smooth. Call this element q. Using Algorithm 6.2.9 in [8], find the prime ideals 
lying above the primes dividing N,, (aq). If the norm of any of these ideals is greater 
than pd+l k-1, begin Step 4 again. Otherwise use Algorithm 4.10.17 in [8] to factor 
(9q) into a product Hl q" of powers of prime ideals. For each i, apply LLL reduction 
to the lattice obtained by mapping qi into ZE as related in subsection 2.1, and in 
this way produce an element vi E qi such that 

h(vi) < 2 N(qi) (r-1) < 2 4 k) (r-1) = +l. 

Notice that Hl vei E (9q) and let v be the element in OF such that vrj H vei. Then 
v is k-smooth. Since k < B, it is also the case that v is B-smooth. 
Step 5. For each prime power le dividing q - 1 and for all i, compute the least 
positive residue mod le of logo(,) 4(v,). If I < max{r, B}, use the Pohlig-Hellman- 
Silver method. Otherwise, use Algorithm 3.1. 
Step 6. For each prime power le dividing q - 1, compute the least positive residue 
of logo(,) 0(v) mod le. If I < max{r, B}, use the Pohlig-Hellman-Silver method. 

Otherwise, proceed as follows. Let a E OF be any element of height < pd4+l. 

Run Steps 1-3 of Algorithm 3.1 with input parameters d and B as if to compute 

logo(,) 0((r). In particular, obtain the matrix A described in Step 3. Next solve the 
congruence 

(5.2) AX --wv mod le, 

where wv is defined as w, was in Algorithm 3.1 except with T now replaced by v. 
The first entry in the solution to (5.2) is likely to be congruent to - logo(,) v(v) 
mod le. If it is not, repeat the process using a new model for Eq as described in 
Step 5 of Algorithm 3.1. 
Step 7. Use the Chinese remainder theorem and the fact that 

z + log() s =E ei logo(,) 0(vi) - logo(,) v(v) mod (q - 1), 

to compute logo(,) s. 
Step 8. Let 0 be the element in Rq such that v(O) = t. Using Steps 4-7, with 
s replaced by t and a replaced by 0, compute logo(,) t. Now determine logt s by 
means of the identity 

logt s- logo() 
8 

mod (q - 1). 

This concludes our description of Algorithm 5.1. 

In the conjecture below and the ensuing discussion, we assume that n is constant 
and that all o(l)'s are for p -* oo. 

Conjecture 5.3. Let d = d(p) > 2 and B = B(p) > 2n(n- 1)/4(r - 1)n be,functions 
such that 

(5.4) d = ((3n)1/3 + o(1))(log p/ log log p)1/3 
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and 

B = Lp[1/3; (8n/9)1/3 + o(1)]. 

For s, t E PF*, let Ti,t(p) be the expected running time of Algorithm 5.1 upon input 
of p, n, the pair s, t, and parameters d(p) and B(p). Let T(p) be the maximum value 
of T, ,t (p) taken over all pairs s, t. Then 

(5.5) T(p) = Lq[1/3; (64/9)1/3 + o(1)]. 

As indicated in subsection 2.4, we assume that r = O((log p)2). Under this 
assumption, (5.4) implies Algorithm 5.1 stops after Step 1 for only finitely many 
primes p. Conjecture 5.3, therefore, is based on our analysis of the subsequent steps 
of the algorithm. Since the time needed by the number field sieve factoring method 
to factor a number the size of q is conjectured to be Lq[1/3; (64/9)1/3 + o(1)] ([6]), 
we begin with Step 3. 

In [5, ?4], the authors show that if the ERH is true, then there exists a constant 
c such that, for all p and each I dividing q - 1, the set 

{ ajtj E F I jajI < c(log p)max{l-1,2}} 

contains an element whose image under v lies outside the subgroup of F* of order 
(q - 1)/1. We therefore expect the asymptotic running time of Step 3 to be polyno- 
mial in log p. Turning to Step 4, we conjecture on the basis of Theorem 2.2.1 that 
the expected number of trials required to find a suitable z is Lp[1/3; (n/9)1/3+o(1)]. 
The conjectured expected time needed for the elliptic curve method to determine 
whether a candidate is pdAi k-l-smooth is Lp[1/3; (8n/9)1/3 + o(1)] (see [21]). We 
conclude that z can be found in time Lp[1/3; (3n)l/3 + o(1)], and leave it to the 
reader to verify that the time required subsequently to factor (rq) and obtain the el- 
ements vi is polynomial in log p. Next, using Conjecture 4.12 and the fact that the 
Pohlig-Hellman-Silver method requires time O(e(log p + 1)) to compute the residue 
of a logarithm mod 1e, we calculate that the expected time needed to compute all 
the residues in Steps 5 and 6 is Lp[1/3; (64n/9)1/3 + o(1)]. Finally, we observe 
that the running time of Step 7 is polynomial in log p and that Step 8 increases 
the running time of the algorithm by a constant factor. Considering all the steps 
together and using the fact that 

Lp[1/3; (64n/9)1/3 + o(1)] = Lq[1/3; (64/9)1/3 + o(1)], 

we obtain (5.5), and our argument in support of Conjecture 5.3 is complete. 
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